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ABSTRACT 

A numerical  method i s  presented f o r  computing t h e  shape of a vertical 

s l e n d e r  j e t  of f l u i d  f a l l i n g  s t e a d i l y  under t h e  f o r c e  of g r a v i t y .  The 

problem be ing  solved is formulated as a non l inea r  f r e e  boundary va lue  

problem f e r  t h e  c ros s - sec t iona l  shape cf  t h e  j e t .  The numerical method 

of s o l u t i o n  treats t h e  boundary cond i t ions  of t h e  problem as a p a i r  of 

non l inea r  hyperbol ic  pseudo-di f fe ren t ia l  equat ions  t o  b e  i n t e g r a t e d  i n  

t h e  stream-wise d i r e c t i o n .  The o r i g i n a l  d i f f e r e n t i a l  equat ion  appears  as 

a n  a u x i l i a r y  condi t ion .  This formulat ion i s  shown t o  be  well-posed. The 

numerical  method is found t o  be s t a b l e  and second order  accu ra t e .  Computa- 

t i o n s  are presented  f o r  je ts  i s su ing  from s e v e r a l  d i f f e r e n t  o r i f i c e  shapes.  

The numerical  method of s o l u t i o n  appears  t o  be new and may be a p p l i c a b l e  

t o  o t h e r  nonl inear  f r e e  boundary va lue  problems. 
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1. In t roduc t ion  

We presen t  i n  t h i s  paper a numerical method which w e  have used t o  

determine t h e  shape of t h e  f r e e  surface of a s l ende r  j e t  of f l u i d  f a l l i n g  

v e r t i c a l l y  i n  t h e  presence of grav i ty .  

three-dimensional p o t e n t i a l  flow. The s o l u t i o n  procedure determines t h e  

c ros s - sec t iona l  shape given t h e  shape and v e l o c i t y  p r o f i l e  a t  a p a r t i c u l a r  

he igh t  (e .g . ,  a t  an  o r i f i c e  from which t h e  j e t  emanates).  Sur face  t e n s i o n  

and v iscous  e f f e c t s  are neglected.  The mathematical  formula t ion  of t h e  

problem l e a d s  t o  a f u l l y  three-dimensional, non l inea r  boundary va lue  

problem f o r  Laplace ' s  equat ion,  for which t h e  boundary of t h e  flow is also 

unknown. For t h e  case of a s lender  j e t ,  however, Tuck (1976) and Geer 

(1977a,b) der ived  equat ions  t o  descr ibe the  f i r s t  approximations t o  t h e  

c ros s - sec t iona l  shape and v e l o c i t i e s  of t h e  j e t .  The problem of determining 

t h e  shape is  thus  reduced t o  solving a non l inea r  two-dimensional problem i n  

t h e  c ros s - sec t iona l  p lane  of the  je t .  

t i o n  t o  t h i s  problem f o r  a j e t  with an e l l i p t i c a l  c ros s - sec t iona l  shape. 

(See a l s o  Green (1977).) To da te  no o t h e r  exac t  s o l u t i o n s  have been found. 

The flow is  assumed t o  be a s teady ,  

Both Tuck and Geer gave an exac t  solu- 

The purpose of t h i s  work i s  to p re sen t  i n  some d e t a i l  t h e  method w e  

have developed t o  so lve  numerically t h e  a s soc ia t ed  non l inea r  f r e e  boundary 

va lue  problem f o r  jets which f a l l  v e r t i c a l l y  from an  o r i f i c e  of a s p e c i f i e d  

shape. 

form more s u i t a b l e  f o r  numerical  i n t e g r a t i o n .  I n  s e c t i o n s  3-5, w e  desc r ibe  

t h e  numerical  method t h a t  we have used t o  i n t e g r a t e  t h e  problem ou t l ined  i n  

s e c t i o n  2 .  

The problem is  formulated i n  s e c t i o n  2 and then  transformed i n t o  a 
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In section 6 we present the results for three of the different orifice 

shapes for which our calculations were made. 

a rectangle, and an equilateral triangle. 

discussed i n  section 7, while the well-posedness and stability of the method 

are discussed in section 8. 

These shapes are an ellipse, 

The accuracy of our method is 

The numerical method presented here appears to be new and may be 

applicable to other three-dimensional free boundary value problems. 

usefulness of most existing numerical methods for solving free boundary 

value problems is restricted to one and two dimensions (see Wilson, et a1 

The 

(1978)). 

2 .  Formulation of the Problem 

Let the velocity potential of the d2t be denoted by @ = @(r,e,z;&) 

and let the shape of the free surface of the jet be described by 

(see Figure 1). Here r, 8, and z form the usual (non-dimensional) 

cylindrical coordinate system, with the positive z-axis pointing vertically 

downward in the direction of gravity. The parameter E, the slenderness ratio 

of the jet, is the ratio of a typical radius of the jet to a typical length 

along the j e t  and is defined precisely by Geer (1977a). The boundary con- 

ditions at the free surface are the kinematic condition of no flow through 

the surface and Bernoulli's equation with constant pressure. 

values of E, Geer (1977a) has shown that @ and s are given by 

r = S(8,z;E) 

For small 

L 

r:hcre @ and S satisfy the conditions 
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- 7  

with 

and 

holding on r = S ( e , z ) .  Equation (2.3) follows from Laplace's equation for 

the potential while equations (2.4) and (2.5) result from the substitution 

of the perturbation expansions (2.1) and (2.2) in the boundary conditions. 

Thus, we see that $ must satisfy the two-dimensional Poisson equation (2.3) 

in the cross-section of the jet, while equation (2.4) essentially prescribes 

the normal derivative of @ at the boundary of the cross-section. Equation 

(2.5) is the additional condition which is needed to determine the free sur- 

face. In particular, it is an easy exercise to show that an initially 

circular jet with a uniform velocity profile has cross-sections which 

remain circular and decrease in area as the jet accelerates. 

To compute @ and S ,  we transform the problem (2.3)-(2.5) into a 

form that is somewhat easier to deal with numerically. We first note that 

we can easily find a particular solution to (2.3) and consequently we 

write @ in the form 
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where J, satisfies the homogeneous version of equation (2.3), i.e., 

Laplace's equation. Both J, and S are presumed known at z = 0.  We 

then introduce a new independent radial variable p,  related to r by 

(2.7) 

Thus, 

r 5 S ( 8 , z )  

new dependent variable R(8,z) by 

r is stretched in a non-uniform manner, but the unknown boundary 

is mapped onto the known boundary p = 1. We also define the 

8 R(8,z) = S ( e , ~ ) ~ ( l + z )  . 

In terms of the independent variables 

J,(p,e,z) 

p,  8, and 2, and the dependent variables 

and R(8,z), equations (2.4) and (2 .5 )  can be written as 

(2.10) 

where 6 = - - as - - - aR These equations hold for p = 1, 0 L 0 F 2 ~ ,  
s a e  2 ~ a e *  

and z > 0. The differential equation ( 2 . 3 )  then becomes 
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A s  a consequence of equations (2.3) - (2.5), we find the integrability 

- 3  

condition 
- 

j2" R(6,z)de = constant 
0 

= 2m.f 

which expresses the constant mass flux in the jet. 

Thus, we seek solutions to equations (2.9) - (2.11) for $ and R 

(2.12) 

in the region 0 5 p 5 1, z > 0. Once $ and R have been found, 4 and 

S can be recovered using (2.6) and (2.8). 

3. Method of Solution 

In this and the next two sections, we shall describe the method we 

have devised to solve the problem formulated in section 2. 

in this section we will present the underlying motivation for our method 

as well as the specific finite difference formulas we use. Details of the 

method we use to solve Laplace's equation will be discussed in the next 

section, while our treatment of possible discontinuities (e.g. corners) 

in the jet profile shape will be presented in section 5 .  

In particular, 

Instead of attempting to solve the differential equation (2.11) subject 

to the auxiliary conditions (2.9) - (2.10) and (2.12) (as in a classical 

approach), we proceed in a different manner. To begin, we temporarily think 

of both JI and R as functions of z and 6, defined only on the boundary 

p = 1. Then, in this context, we may regard equations (2.9) - (2.10) as a 

system of two nonlinear hyperbolic pseudo-differential equations for Q and 

R, with z being the time-like variable and 6 the spatial variable. These 

equations are hyperbolic because the first-order symbol of the linearized 

system has purely imaginary eigenvalues (see section 8) .  

differential equations because the operator - 

on $, when considered as defined only on p = 1. However, the "auxiliary" 

condition (2.11) which h o l d s  for p < 1 serves to define ?!k in terms of 

J, and R on the boundary. Condition (2.12) is then a conservation law 

They are "pseudo" 

is a non-local operator 3 
aP 

aP 
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In order to obtain a numerical approximation to the solution of our 

problem formulated in this manner, we use a finite difference scheme defined 

on the grid points as follows: 

e, = (i-1) A e i=l, ..., N , 

where h e  = 2n/(N-l), A p  = l/(M-l), and Az is chosen to satisfy 

appropriate stability and accuracy criteria (see sections 7 and 8 ) .  Note 

that Bi = 0, ON =  IT, z = 0, p1 = 1 and pM = 0. We then use the 

MacCormack scheme (MacConnack (1969)) to solve equations (2.9) - (2.10). 
In particular, if we define the vector w(8,z) by w = (R,JI)T, then 

equations (2.9) - (2.10) can be written as 

0 

+ + 

-+ 
where the form of the vector F can be determined from the right-hand sides 

of (2.9) - (2.10). We employ the forward and backward difference operators, 

D+ and D - , respectively, defined by 

+n +n +n 
- i  i-1 D w = (wi-w ) / A 0  , (3.3) 
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. 
- ?  

Then the forward-backward MacCormack scheme we use is given by the following 

two-step formula: 

(predictor) : 

(corrector): 

Here D $n is an approximation to ?!k aP on p = l  at e = B i  and z = z  n' 

which we shall describe below. 

backward MacCormack scheme is alternated with the backward-forward scheme, 

which uses backward differences in the predictor step and forward differences 

in the corrector step. 

was satisifed more closely when the quantity B in equations (2.9) and 

(2.10) was approximated as 

P i  
In order to maintain symmetry, the forward- 

Also,it was found that the conservation law (2.12) 

and this form was used in all the calculations given here. 

The term D qn 
P i  

in (3.4) and (3.5) is computed by first solving for 
n an approximation to the solution JI of (2.11), with Jli specified on the 

boundary. The approximation is given by 
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A 

( 3 . 7 )  

I n  equat ions  ( 3 . 6 )  and (3 .7)  w e  have used second o rde r  a c c u r a t e  d i f f e r e n c e  

approximations t o  t h e  d e r i v a t i v e s  of $J and R. Equations (3.6) are so lved  

by success ive  over - re laxa t ion  (see s e c t i o n  4 ) .  Once $Jn i s  determined 

t h e  term Dp$; i s  computed as 
2,s  

3 
a P  

which i s  a second-order one-sided approximation t o  

Equations ( 3 . 1 )  - (3 .8)  desc r ibe  our  numerical scheme t o  solve t h e  

problem of sec t ion  2. For each z s t e p ,  equa t ions  ( 3 . 6 )  are solved t w i c e ,  

once corresponding t o  t h e  p r e d i c t o r  s t e p s  ( 3 . 4 )  and then  aga in  f o r  t h e  

c o r r e c t o r  s tep  ( 3 . 5 ) .  

a c c u r a t e  w i l l  be shown below. 

The f a c t  t h a t  our  scheme is formal ly  second o rde r  

I n  s e c t i o n  7 ,  t h e  second o rde r  accuracy of 

ou r  method is  confirmed by t h e  r e s u l t s  of s e v e r a l  numerical  experiments.  

We conclude t h i s  s e c t i o n  by showing t h a t  t h e  scheme given by equat ions  

(3.4) - ( 3 . 5 )  is formally second-order accu ra t e .  

i f  w i s  a smooth func t ion  of z then  by Tay lo r ' s  theorem 

To do t h i s ,  we  no te  t h a t  
-+ 
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L e t  A 0  and Ap be propor t iona l  to Az and f o r  convenience set 

Then, from (3.2) 

and 

( 3 . 9 )  

(3.10) 

(3.11) 

where A? = ?+l - p, e t c .  

If %+' w 

of ?+I, and 

i s  def ined by t h e  r i g h t  s i d e  of (3 .4 ) ,  i .e. the  pred ic ted  va lue  
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then 

?n+l -n+l 
= D w , and q = D $ ( 1 , 8 , ~ , + ~ )  , P- - P 

A? = $1 - 2 + ~ ( ( A Z ) ~ )  

Fl - 2 + ~((AZ)~) A;: = 

= ;in+' - qn + O( ( A z ) ~ )  

, 

, - 

. 

S u b s t i t u t i n g  equat ions  (3.10) - (3.12) i n t o  (3.9) ,  w e  o b t a i n  

+ -+ aZ -+n ~ ~ 1 %  a? a$ %+i -tn 
W ( Z * + ~ )  = w(z,) + - F + - F + AZ -+- (W - w ) 

2 + 2 1 -  a; 

. 

(3.12) 

which i s  equiva len t  t o  equat ions (3.4) - (3.5), and shows t h a t  t h e  scheme 

is  formally second o r d e r  accura te .  

4. Solut ion of Laplace ' s  Equation 
4 

L._. To use the  d i f f e r e n c e  scheme (3.1) - (3.8) t o  advance t h e  s o l u t i o n  from 

n r e q u i r e s  so lv ing  t h e  d i f f e r e n c e  approximation ( 3 . 6 )  t o  n+l Z " Z  t o  2'2 

Laplace 's  equation f o r  both t h e  p r e d i c t o r  and c o r r e c t o r  s t e p s .  

of +n and Jt -n+l i n  t h e  i n t e r i o r  ( i . e . ,  p < 1) are used wi th  formula (3.8) 

The va lues  
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a 

. 
.-e 

to compute Dp@ and D Sn+l, respectively, which are the approximations 

to the normal derivative of Jl at p=1. 
P 

The difference approximation ( 3 . 6 )  to Laplace's equation is solved 

by point successive over-relaxation (SOR) using the natural ordering of 

grid points. The SOR algorithm is given by 

,k+l ,k+l 
- Jli, j-1 - 

where, to simplify notation, we write vJ 'k for the kth iterate 
'9J 

for either J, or $i,j n+l . The iteration parameter w - is given by 
n 

i i,j 

where 

- 1/2 1/ 4 
(4.3) w = 2/ (1+ 2.4G 

- 
and M is defined by equation (2.12). 

dividing the standard SOR parameter w 

efficient of I) in the approximation ( 3 . 6 ) .  

Formula (4.2) i s  a normalization, 

by the absolute value of the co- 

i , j  
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Formula (4 .3 )  g iv ing  t h e  SOR parameter w w i l l  be  d iscussed  later i n  t h i s  

s ec t ion .  The c o e f f i c i e n t s  Ai, Bii, and Ci a r e  func t ions  of R: o r  

E,"+' and are  given by formulas (3.7). 

The value of I)' k+l a t  t h e  o r i g i n ,  i . e .  'i sk+l, ,M w a s  determined 

, k+l 
from t h e  values a t  t h e  neighboring g r i d  p o i n t s ,  

t h e  formula 

$i,M-l by means of 

N- 1 N - 1  

i=l i= 1 
1 (Ai+Ci) 

, k+l 
' i , M  

Formula (4 .4 )  is derived by i n t e g r a t i n g  Laplace 's  equat ion (2.11)  

over a d i s c  of r ad ius  E centered  a t  t h e  o r i g i n .  Th i s  g ives  

I f  E i s  taken to  b e  $Ap and t h e  i n t e g r a l s  a r e  approximated by sums 

while  t h e  integrands are approximated as 

and 

then equat ion ( 4 . 5 )  y i e l d s  

. 
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Here, as in equations (3.71, 

-c 

is independent of Bi and 
i ,M Since $ 

formula (4.4) follows easily from formula (4.6). Note that formula 

(4.4) is formally second-order accurate, as is the approximation ( 3 . 6 ) .  

After equations (4.1) and (4.4) where applied for i<N, the 

periodicity conditions 

were imposed. The iterative procedure given by formulas (4.1) - (4.4) 
was terminated when certain convergence criteria were satisfied. These 

criteria will be discussed later in this section. 

As noted at the beginning of this section, the approximation to 

Laplace's equation must be solved twice to advance the solution by one 

z-step. Solving these difference equations is the most time consuming 

portion of the algorithm. By using linear extrapolation t o  obtain the 

initial iterate for the predictor step the solution time was reduced 

dramatically. In particular, for the predictor step, the values of 

*+19' , the starting values for the iteration, were obtained as 
' i,j 

n- 1 
= 2*y,j - $i,j  

-n+l,O 
'i, j 

i = 1, ..., N 

j = 2, ..., M 
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f o r  t h e  i n t e r i o r  va lues .  The va lues  of qn+l on t h e  boundary were g iven  
i,l 

by equat ion  ( 3 . 4 ) .  For t h e  c o r r e c t o r  s t e p  t h e  i n i t i a l  iterates w e r e  taken 

t o  be  t h e  values  of t h e  p red ic t ed  p o t e n t i a l  i n  t h e  i n t e r io r ,  i .e. 

Y i = 1, ..., N n+l  , 0 n+l  
'i,j = 'i,j 

j = 2 ,  ..., M . 
( 4 . 9 )  

n+l 
i Y 1  

on t h e  boundary are, of course ,  given by formula (3.5). The va lues  of $ 

For both t h e  p r e d i c t o r  and c o r r e c t o r  s t e p s  t h e  SOR procedure w a s  

t e rmina ted  when t h e  relative change between iterates measured i n  t h e  

R2-norm w a s  less then  a small parameter,  E, i .e. when 

Then w e  set 

n+l - n+l  , k 
' i,j - 'i,j 

(4.10) 

and s i m i l a r l y  f o r  $"+I. For t h e  computations descr ibed  i n  t h i s  paper E: 

was taken t o  be n+l  The number of i t e r a t i o n s  t o  compute e i t h e r  $ 

o r  $"+l was r e s t r i c t e d  t o  be  less than  250. When t h i s  l i m i t  w a s  

achieved, the last  i terate  w a s  taken t o  be t h e  so lu t ion .  Th i s  l i m i t  

w a s  encountered only f o r  z =  A Z  (and sometimes f o r  2Az) when I I z 

and I 12 were very  s m a l l ,  o r  f o r  l a r g e r  va lues  of z when t h e  

s o l u t i o n  w a s  no longer  w e l l  behaved due t o  l a c k  of r e s o l u t i o n  ( see  

s e c t i o n  6 ) .  Since f o r  our  examples t h e  p o t e n t i a l  $ i s  ze ro  a t  z = 0 ,  

t h e  condi t ion (4.10) i s  no t  very appropr i a t e  f o r  small va lues  of n. 

Typica l  va lues  f o r  t h e  number of SOR i t e r a t i o n s  requi red  t o  s o l v e  

Column a )  g ives  t h e  number of f o r  t h e  p o t e n t i a l  are given i n  Table I.  

c 

c 
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i t e r a t i o n s  when t h e  l i n e a r  ex t r apo la t ion  (4.8) w a s  used f o r  t h e  p r e d i c t o r  

s t e p  and column b)  g ives  t h e  number of i t e r a t i o n s  when t h e  i n i t i a l  va lues  

f o r  t h e  p r e d i c t o r  s t e p  w e r e  t he  values of p o t e n t i a l  a t  t h e  prev ious  

va lues  of z ,  i .e ,  

n+1,0 - n 
'i, j - 'i,j (4.11) 

Note t h a t  t h e  t o t a l  number of i t e r a t i o n s  p e r  s t e p  us ing  (4.11) i s  more 

than  f i v e  t i m e s  t h a t  requi red  when t h e  l i n e a r  e x t r a p o l a t i o n  (4.8) i s  used. 

This  reduct ion  i n  t i m e  more than j u s t i f i e s  t h e  extra s t o r a g e  r equ i r ed  t o  

keep t h e  va lues  of rl, n-1. 

The formula (4.3) f o r  t h e  i t e r a t i o n  parameter w w a s  ob ta ined  i n  

t h e  fol lowing way. The d i f f e rence  equat ions  ( 3 . 5 )  are a second-order 

approximation t o  Laplace ' s  equation on t h e  reg ion  

non-uniform g r i d  given by equations (3.1) .  For t h e  usua l  second-order 

a c c u r a t e  f ive-point  d i f f e r e n c e  approximation f o r  Laplace 's  equat ion  on 

a r e g u l a r  mesh, Garabedian (1956) showed t h a t  t h e  opt imal  i t e r a t i o n  

parameter f o r  SOR is given approximately by 

r - < S ( e , i )  with  a 

2 

= l + k l h / f i  , (4.12) 

where h i s  the  mesh width and kl i s  the  f i r s t  e igenvalue of t h e  

Laplac ian  on t h e  domain being considered. H e  a l s o  pointed out  t h a t  t h e  

va lue  of kl can be est imated from below by t h e  Faber-Krahn i n e q u a l i t y  

where A i s  the  area of  t h e  domain. 
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In the present case, the cross-sectional area A varies as a function 

of z and is given by 

- 
where M is defined by equation (2.12). Thus we have 

Using this as an estimate for kl in equation (4.11) , we find 

In the present context it is not clear what value should be given 

to h. O n  intuitive grounds it was taken to be proportional to Ap. 

Moreover, the Faber-Krahn inequality is sharp for circular domains and 

is less accurate for elongated and non-convex domains. Thus, the 

quantity klh in formula (4.12) was estimated by multiples of klAp 

and, after some experimentation, it was found that 2& Ap or %,Ap 1 
worked very well in most of the computations considered in this paper. 

5 

5. The Treatment of Corners 

The scheme (3.1) - (3 .8)  was used to compute the shape of jets 

whose cross-sectional shapes contained comers or cusps. Examples of 

such jets are those which emanate from rectangular or triangular 

orifices. In this section we will examine the finite difference 

approximation to the solution in the vicinity of such comers. 

For this purpose, consider a comer such as that illustrated in 

Figure 2 and assume that R and + are symmetric about the comer, 
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t h a t  is, 

where eo is t h e  angular  coord ina te  of t h e  corner .  A t  such a c o m e r  

a R / a e  and ?!k ae w i l l  change s i g n ,  i .e. 

a R  ( e o + e )  = - - (eo-  e )  - a R  
ae ae 

and a R / a e  w i l l  be  discont inuous.  @ecall t h a t  R i s  r e l a t e d  t o  t h e  

shape func t ion  S by equat ion  (2.8).) However, n o t i c e  t h a t  t h e s e  

d iscont inuous  q u a n t i t i e s  appear  i n  equat ions  (2.9) - (2.10) only as 

products  o r  squares  ( r e c a l l  t h a t  f3 = -- aR) so t h a t  t h e  right-hand 

s i d e s  of equat ions  (2.9) - (2.10) are cont inuous a t  a symmetric c o m e r .  

I n  o r d e r  t o  o b t a i n  a c c u r a t e  s o l u t i o n s  f o r  j e t s  having such c o m e r s ,  i t  

is e s s e n t i a l  t h a t  t h e  f i n i t e  d i f f e r e n c e  scheme proper ly  po r t r ay  t h i s  

behavior  of t h e  d i f f e r e n t i a l  equat ions.  

* 

ZR ae 

Consider,  f o r  example, t h e  term - aR ?!k which appears  i n  equat ion  

Assume t h a t  t h e  g r i d  is  as shown i n  F igure  2a, w i t h  t h e  co rne r  

ae ae 
(2.9).  

g r i d  p o i n t  having index i. The d iscont inuous  change i n  sign of a R / a e  

a t  t h e  corner  is  r e f l e c t e d  i n  t h e  change of s i g n  between 

D - Ri. S imi l a r ly ,  D+Qi and D-Jli are of oppos i t e  s ign .  Thus, 

D+Ri and 

- aR-?!k = ~ I ( D  R D lj~ ae ae + i + i  - + D R i D - q i )  , (5 .1)  
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a R  aJ! 
ae ae which is an accurate approximation to the continuous function - 

on the boundary. Similarly, the squares of f3 and &$/a0 are 

approximated well by the average of the squares of the one-sided 

differences. In fact, if R and $ each have one-sided second 

derivatives at the corner which are continuous and one-sided third 

derivatives (which may be discontinuous but bounded), then the above 

approximations are formally second-order accurate. We note, however, 

that the central difference approximations to - a R  

the corner point vanish and thus give inaccurate approximations. 

about ae and ae 

Also, if the grid points are placed symmetrically about the corner 

without having a grid point at the comer, as in Figure Zb, then for 

those grid points nearest the corner the approximation (5.1) will not 

be accurate. Central differehces will not be accurate in this case 

either. 

Consider now the treatment of these terms in the MacCormack scheme 

(3.4) - (3.5) when the grid is as in Figure 2a. As noted above the 

approximations such as (5.1) are formally second-order accurate at such 

comers if R and $ satisfy appropriate conditions on their one-sided 

higher derivatives. This implies that equations (3.10) and (3.11) are 

valid and, hence, that the MacCormack scheme is formally second-order 

accurate even at such comers (see also section 7). 

Laplace's equation in the form of equation (2.11) also contains 

the terms B2 and 3 %  ( p a , ) .  The particular form of differencing 

for these terms in the difference approximation (3.6)-(3.7) was chosen in 

l i g h t  of the above considerations. Therefore, one would expect that 

the approximation (3.6)-(3.7) is more accurate than if centered 

r. 

4 

differences were used for the derivatives with respect to 0. 
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6. Examples 

Seve ra l  examples of t h i n  streams f a l l i n g  v e r t i c a l l y  through an o r i f i c e  

of a s p e c i f i e d  shape were ca l cu la t ed  us ing  t h e  scheme o u t l i n e d  i n  t h e  

prev ious  s e c t i o n s .  W e  p resent  here t h r e e  of t h e s e  examples. These and 

o t h e r  examples are d iscussed  i n  more d e t a i l  e lsewhere ( see  Geer and 

Str ikwerda (1980)).  For each example t h e  i n i t i a l  cond i t ions  w e r e  

J, 0 and R(8,z) ,  i .e. S ( 8 , z ) ,  s p e c i f i e d  a t  z = 0. Note t h a t  t h e  

cond i t ion  $J = 0 a t  z = 0 corresponds t o  a j e t  t h a t  i s  emanating wi th  a 

uniform v e l o c i t y  p r o f i l e .  Thus, i n  t h e  n o t a t i o n  of  s e c t i o n  3, w e  set 

= 0,  and RP = R o ( 8 .  ) , where R o ( 8 )  w a s  s p e c i f i e d  by one $JY,  j 1 
z = 0, 

of t h e  fol lowing:  

1. An e l l i p s e ,  Ro = 5, (.25 cos28 + sin28)",  where t h e  semi-axes 

of t h e  e l l i p s e  are 2 and 1 (Figure 3 ) ,  

2. An e q u i l a t e r a l  t r i a n g l e ,  Ro = 4 min sec2(8-2rR/3) where t h e  
R=O , 1 ,2 

l e n g t h  of t h e  s i d e  of t h e  t r i a n g l e  i s  2& . (F igure  4 )  

3. A r ec t ang le ,  Ro = $ min (sec28 ,  4 c s c 2 8 ) ,  where 2 and 4 are 

t h e  l eng ths  of t h e  s i d e s  of t h e  rec tangle  (F igure  5).  

For each example t h e  o r i g i n  w a s  l oca t ed  a t  t h e  c e n t e r  of mass of 

t h e  shape as r equ i r ed  i n  t h e  de r iva t ion  of  t h e  b a s i c  equat ion  (2.3) - 
( 2 . 4 )  (see Geer (1977a)).  The corresponding f i g u r e s  show c ross - sec t ions  

of t h e  j e t  as several va lues  of z. 

The primary purpose of t h e  f i r s t  example, t h e  e l l i p s e ,  w a s  t o  check 

t h e  accuracy of t h e  numerical  scheme. The numerical  s o l u t i o n  w a s  compared 

w i t h  t h e  a n a l y t i c  s o l u t i o n  presented by Geer (1977a). The c a l c u l a t i o n  of 

t h i s  a n a l y t i c  s o l u t i o n  involved only t h e  s t r a igh t fo rward  numerical  

i n t e g r a t i o n  of non l inea r  ord inary  d € f f e r e n t i a l  equa t ions ,  and consequent ly  

w e  assumed t h a t  t h i s  s o l u t i o n  is  known exac t ly .  
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Figure  3 shows t h e  c ros s - sec t iona l  shape of t h e  j e t  a t  va r ious  va lues  

of z. A t  z = 0, t h e  e l l i p s e  had an a spec t  r a t i o  of 2.  As z i nc reased ,  

t h e  shape of t he  je t  became less e c c e n t r i c ,  w a s  n e a r l y  c i r c u l a r  a t  about 

Z = 4.9, and then assumed an  e l l i p t i c a l  shape wi th  t h e  d i r e c t i o n  of t h e  

major and minor axes  e x a c t l y  interchanged wi th  those  of t h e  o r i g i n a l  axes. 

The cross -sec t iona l  shape became more and more elongated as increased .  

A t  z = 14.0, t h e  numerical  s o l u t i o n  wi th  N = 101, M = 31, and Az = .1 

agreed wi th  the a n a l y t i c  s o l u t i o n  t o  w i t h i n  1% relat ive e r r o r  i n  t h e  

and E'- norms, and t o  w i t h i n  2% r e l a t i v e  e r r o r  i n  t h e  maximum norm. 

z 

R2- 

I n  a l l  of ou r  examples t h e  computations terminated when t h e  outward 

moving por t ions  became s u f f i c i e n t l y  e longated s o  t h a t  they  could no 

longer  be  resolved adequately by t h e  uniform g r i d  used f o r  t h e  angular  

coord ina te ,  The numerical  break-up of t h e  s o l u t i o n  occurred soon a f t e r  

t h e  l as t  c ross -sec t ion  shown i n  each case. The conserva t ion  l a w  (2.12) 

w a s  s a t i s f i e d  t o  w i t h i n  .5% r e l a t i v e  e r r o r  i n  a l l  t h e  cases shown here.  

The o the r  examples had f o r  i n i t i a l  shapes an  e q u i l a t e r a l  t r i a n g l e  

(F igure  4 )  and a r e c t a n g l e  (Figure 5 ) .  The i n i t i a l  l eng th  of a s i d e  of 

t h e  t r i a n g l e  w a s  

u n i t s  and 2 u n i t s .  I n  t h e s e  examples, f o r  s m a l l  va lues  of z t h e  cross-  

s e c t i o n s  decreased i n  area, bu t  maintained e s s e n t i a l l y  t h e  same shape. 

I n  p a r t i c u l a r  t h e  d i s c o n t i n u i t i e s  i n  t h e  s l o p e s  a t  t h e  co rne r s  were 

propagated fo r  some d i s t a n c e  i n  z .  For l a r g e r  va lues  of z t h e  shape 

became non-convex as those  po r t ions  of t h e  s u r f a c e  t h a t  had been co rne r s  

"buckled-in". 

t h e  s i d e s  formed t h e  new e x t r e m i t i e s  of t h e  c ros s - sec t iona l  shape. For 

t h e  case  of t h e  e q u i l a t e r a l  t r i a n g l e  t h e  e x t r e m i t i e s  a l l  extended outward 

2 f i  u n i t s ,  whi le  t h e  s i d e s  of t h e  r e c t a n g l e  were 4 

Those p o r t i o n s  of t h e  s u r f a c e  t h a t  had o r i g i n a l l y  been 

Y 
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c 

as z increased .  For t h e  case  of the r e c t a n g l e  t h e  major e x t r e m i t i e s  

extended outward and t h e  minor ex t r emi t i e s  moved slowly inward. 

numerical  break-up of t h e s e  cases  occurred a long  t h e s e  outward moving 

e x t r e m i t i e s  as noted above. 

The 

We p o i n t  ou t  t h a t  t h e  r e s u l t s  f o r  t h e  e q u i l a t e r a l  t r i a n g l e  are con- 

s i s t e n t  w i th  those  of Bidone discussed by Rayleigh (1879), i.e.". ..a ve in  

i s s u i n g  from an o r i f i c e  i n  t h e  form of a r e g u l a r  polygon, of any number of 

s i d e s ,  reso lved  i t s e l f  i n t o  an equal number of t h i n  s h e e t s ,  whose p lanes  are 

perpendicular  t o  t h e  s i d e s  of t h e  polygon." (See a l s o  Rayleigh (19451.) 

However, Rayleigh (1879) i m p l i e s  by t h e  ske tch  of t h e  c ross -sec t ions  

of t h e  e q u i l a t e r a l  t r i a n g l e  t h a t  the t r i a n g l e  assumed a hexagonal cross-  

s e c t i o n .  

t h a t  t h i s  discrepancy is  due t o  mistaken obse rva t ions  nea r  t h e  p o i n t  

where t h e  c ross -sec t ion  w a s  c i r c u l a r .  

Our c a l c u l a t i o n s  d i d  no t  prnduce such a shape snd w e  presume 

The example wi th  t h e  rec tangular  i n i t i a l  shapewas run wi th  N = 81, 

M = 31, and Az = 0.1. The t r i a n g u l a r  shape w a s  run wi th  N = 61, M = 31, 

and Az = 0.1. I n  t h e s e  examples, t h e  va lue  of N w a s  chosen so t h a t  a 

g r i d  p o i n t  would be a t  o r  very  near t h e  co rne r  of t h e  o r i g i n a l  shape. 

7. Numerical Accuracy 

A s  shown i n  sec t ions  3 and 5,  t he  f i n i t e  d i f f e r e n c e  formulas used t o  

approximate t h e  system of equat ions (2.9) - (2.11) are a l l  formally second- 

o r d e r  accu ra t e .  Moreover, i n  t h e  numerical c a l c u l a t i o n s ,  t h e  parameter A z  

and t h e  convergence c r i t e r i a  f o r  t h e  SOR i t e r a t i o n s  were a l l  chosen wi th  

t h e  purpose of maintaining t h e  second-order accuracy. Nonetheless ,  i t  must 

be demonstrated t h a t  t he  o v e r a l l  scheme i s  i n  f a c t  second-order accu ra t e .  
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A series of computations w a s  made t o  determine t h e  accuracy of t h e  

scheme. As noted i n  s e c t i o n  6,  a n  a l t e r n a t i v e  procedure can b e  employed 

t o  determine the  shape of t h e  j e t  when t h e  j e t  emanates from a n  e l l i p t i c a l  I 

o r i f i c e .  This a l t e r n a t i v e  procedure r e q u i r e s  so lv ing  a nonl inear  

o rd ina ry  d i f f e r e n t i a l  equat ion  of second o rde r  f o r  t h e  a spec t  r a t i o .  

This  equat ion w a s  i n t e g r a t e d  us ing  a f o u r t h  o r d e r  Runge-Kutta method 

wi th  a small s t e p  s i ze .  Because of t h e  h igh  accuracy employed, t h e  

numerical  s o l u t i o n  of t h i s  equat ion  w a s  assumed t o  be  exact f o r  t h e  

purposes  of t h i s  comparison. 

The d i f f e rence  scheme g iven  by equat ions  (3.1) - (3.8) w a s  used 

to compute t h e  shape of t h e  e l l i p t i c a l  j e t  (with t h e  i n i t i a l  d a t a  g iven  

i n  example 1 of s e c t i o n  6) up t o  z = 10.0 f o r  va r ious  va lues  of N 

and M. The z-s tep,  Az, w a s  chosen as lO/(N-1) so t h a t  i n t e g r a t i n g  t h e  

f i n i t e  d i f f e rence  scheme t o  z = 10 r equ i r ed  N - 1  complete s t e p s .  The 

SOR convergence parameter E w a s  lo-’, wh i l e  t h e  va lues  of N were 2 1 ,  

41, 61, 81, and 101  and t h e  va lues  of M w e r e  .3(N-1) + 1. 

The r e s u l t s  are  displayed i n  Table I1 f o r  t h e  e r r o r s  measured i n  the  

II - and maximum norms. The las t  two columns g ive  t h e  change i n  t h e  loga- 

r i thm of t h e  e r r o r  divided by t h e  change i n  t h e  logari thm of (N-1) f o r  

2 

success ive  va lues  of N ,  i . e .  

The closeness  o f  t hese  e n t r i e s  t o  -2 i n d i c a t e s  t h a t  t h e  o v e r a l l  method i s  
.. 

4 

c 

I 

z second-order accura te .  The R -nom e r r o r s  l i s t e d  are r e l a t i v e  e r r o r s ,  i . e .  

t he  R -norm e r r o r  d iv ided  by t h e  II -nom of t h e  s o l u t i o n .  2 2 

Comparisons were a l s o  made t o  s tudy  t h e  e f f e c t  of t h e  placement of 

g r i d  po in t s  on t h e  computation of je ts  wi th  corners .  A s  d i scussed  i n  
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section 5, the placement of grid points, as shown in Figure 2a should 

be more accurate than that shown in Figure 2b. 

a grid point at the vertex (Figure 2b) the discontinuities in the 

tangents were smeared out almost immediately; otherwise, the solutions 

are similar to those seen in Figures 4 and 5. We emphasize that for 

such shapes we have no means of ascertaining which solution is more 

accurate. However, in view of the analysis given in section 5, it would 

appear that the results are most accurate when a grid point is at or 

very close to the vertex of the corner. 

In those cases without 

We note also that the symmetry of the results shown in Figures 3 - 5 
is not imposed on the computations but results only from the initial 

symmetry at z = 0. By alternating the forward-backward MacCormack 

scheme with the backward-forward scheme, asymmetric discretization errors 

are presumably minimized. However, in runs with the elliptical jet using 

only the forward-backward scheme, the accuracy and symmetry were not 

severely affected. 

8. Well-posedness of the Problem 

We will now discuss the well-posedness of the system of equations 

( 2 . 9 )  - (2.11). 
insure the growth rate of small perturbations to the solution of equations 

(2.9) - (2.11) is bounded. We will then indicate how, by a similar 

analysis, we could demonstrate the stability of our numerical scheme. 

In particular, we shall derive a necessary condition to 

An analysis of the well-posedness of the system (2.9) - (2.11) is 

necessary because the original problem, before the perturbation in the 

slenderness ratio, is an elliptic problem. 

marching in any particular direction is not a well-posed method. 

must then be shown that to solve the equations ( 2 . 9 )  - (2.11) by marching 
in the z-direction is a well-posed problem. 

Solving such a problem by 

It 
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To begin our analysis, let (E,$) be a smooth solution of the system 

( 2 . 9 )  - (2.11) and consider another solution (R,$J) of this system of the 

form 

R = + 2 n E  

and 

Here q is a perturbation parameter and (2qf6,rlG) represent small 

perturbations in E and $, respectively. Thus, to investigate the 

well-posedness of the system (2.9) - (2.111, we shall first determine 

(to first order) the system of equations satisfied by 

then show that this linear system is well-posed if a certain scalar 

quantity a = c r ( 0 , z )  is non-positive. 

(i,$). We shall 

In order to determine the equations satisfied by (E,$), we sub- 

stitute (8.1) into (2.9) - (2.11), expand the resulting expressions in 

a Taylor series about r\ = 0, and then set the coefficient of q in 

each equation equal to zero. 

of equations. 

In this way we obtain the following system 

c 

I 
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- 
where f3 = - - Here equat ions (8 .2 )  - (8 .3 )  hold on p = 1, whi le  

equat ion ( 8 . 4 )  holds f o r  0 5 p < 1 and 0 < 8 < ZIT. 

2~ a e -  
- -  

W e  now wish t o  examine t h e  behavior of (a,$) i n  t h e  neighborhood 

of a po in t  (eo ,z0)  on t h e  boundary p = 1. W e  are p a r t i c u l a r l y  i n t e r e s t e d  

i n  t h e  behavior  as a func t ion  of z of s o l u t i o n s  (fl,$) which have high  

frequency components i n  t h e  angular v a r i a b l e  

s o l u t i o n s  whose i n i t i a l  va lues  a t  

8. Thus, w e  s h a l l  cons ider  

z = zo are of t h e  form 

are s i m i l a r l y  f o r  $, where w is a p o s i t i v e  parameter and 21 i s  a 

f u n c t i o n  of 8. W e  w i l l  then cons t ruc t  a formal  asymptot ic  series f o r  

i n  p o s i t i v e  powers of l / w .  This approach i s  similar t o  t h a t  of 

Lax (1957). 

It is a r e s u l t  of t h e  ana lys i s  t h a t  powers of w t o  ha l f - in t ege r  

powers enter t h e  expansion i n  a n a t u r a l  way. Thus, we look f o r  s o l u t i o n s  

t o  (8 .2)  - (8 .4 )  of t h e  form 
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where w >> 1 and l l l ( e , z ) ,  t 1 / 2 ( e r z ) ,  k l ( e , z ) ,  k 1 / 2 ( e , z ) ,  I t j l 2 ,  

J l j / 2 ,  and + j / 2  

t h e  b racke t s  i n  t h e  expansion ( 8 . 6 )  r ep resen t s  a s o l u t i o n  t o  t h e  homogeneous 

ve r s ion  of equat ion ( 8 . 4 )  ( i . e .  equa t ion  ( 8 . 4 )  wi th  E 0 ) ,  whi le  t h e  

second term rep resen t s  a p a r t i c u l a r  s o l u t i o n  of t h i s  equat ion  corresponding 

are a l l  func t ions  t o  be determined. The f i r s t  term i n  

t o  R given by equat ion ( 8 . 5 ) .  

Subs t i t u t ing  t h e  expansions ( 8 . 5 )  and ( 8 . 6 )  i n t o  equat ion  ( 8 . 4 )  and 

equat ing  c o e f f i c i e n t s  of l i k e  powers of w r e s u l t s  i n  t h e  r e l a t i o n s  

A fi  

$0  = P g R o ,  $ 1 / 2  = P $ R 1 / 2 ,  (8.7) 

and 

i f  $ - > 0, and 

I n  the  following w e  w i l l  assume, without  l o s s  of g e n e r a l i t y ,  t h a t  

is  non-negative s i n c e  by t ak ing  t h e  complex conjugate  of (8.5) and ( 8 . 6 )  

w e  ob ta in  a s o l u t i o n  of similar form with  

a k l / a e  

aki/ae of oppos i t e  s ign .  

We now s u b s t i t u t e  t h e  expansions ( 8 . 5 )  and ( 8 . 6 )  i n t o  equat ions  ( 8 . 2 )  

and ( 8 . 3 )  and equate  l i k e  powers of 

The terms containing f i r s t  powers of w g i v e  t h e  equat ions  

w, us ing  t h e  r e l a t i o n s  ( 8 . 7 )  and ( 8 . 8 ) .  

" 
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c 

From t h i s  w e  conclude t h a t  $ 0 :  0 and 

The terms w i t h  u1/2 g ive  t h e  equat ion 

(8.10) 

(8.11) 

Equation (8.10) i s  similar t o  t h e  e ikona l  equat ion  of geometr ica l  

o p t i c s ,  and i n  p a r t i c u l a r  i t  shows t h a t  21 which is  i n i t i a l l y  real 

w i l l  remain so ,  being cons t an t  along t h e  c h a r a c t e r i s t i c s  given by 

de 
dz - + x ( e , z )  = 0. 

Thus t h i s  system has real c h a r a c t e r i s t i c s  as do hyperbol ic  systems. From 

equa t ion  (8.11) w e  see t h a t  k1/2 w i l l  no t  be real un le s s  $ l / 2 R 0  i s  

pure ly  imaginary. If 

Im al/,(z,e> < 0 

t hen  from equat ion  (8.5) w e  see t h a t  t h e  amplitude of t h e  s o l u t i o n  w i l l  

grow as 

and, t hus ,  t h e  i n i t i a l  va lue  problem f o r  equat ions  (8.2) and (8.3) w i l l  

be  i l l -posed  i n  t h e  sense  of Hadamard ( see  Kreiss (1963)).  

From t h e  zero-th o rde r  terms i n  w we ob ta in  t h e  r e l a t i o n  

(8.12) 

where 
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Thus, w e  see t h a t  i f  a is  non-posi t ive then  +1/2/R0 w i l l  be  

pure ly  imaginary and t h e  amplitude of t h e  s o l u t i o n  w i l l  no t  grow 

wi th  0, while i f  a i s  p o s i t i v e  then t h e  h igh  frequency pe r tu rba t ions  

w i l l  grow exponent ia l ly  as e 
1 1 2  

]Irn R 1 / 2 1  . Thus, i t  is  a necessary  condi- 0 

t i o n  f o r  well-posedness t h a t  a be non-posi t ive.  

In t h e  numerical  experiments t h e  q u a n t i t y  a w a s  approximated using 

(formally)  f i r s t - o r d e r  accu ra t e  one-sided d i f f e rences .  It w a s  found t h a t  

th i s  approximation t o  

A t  t hose  values  of z 

c1 w a s  nega t ive  throughout most of t h e  computation. 

f o r  which t h e  t h i n  s h e e t s  were n o t  being adequately 

reso lved ,  a became p o s i t i v e .  However, t h e  s o l u t i o n  w a s  not smooth s o  

t h a t  t h e  computation of c1 may have been so i n a c c u r a t e  as t o  be meaningless.  

It appears then  t h a t  t h e  system of equat ions  (2.9-2.11) i s  well-posed f o r  

each of t h e  examples considered he re ,  a t  least f o r  those  va lues  of z f o r  

which t h e  s o l u t i o n  has  been computed. 

f o r  a l l  va lues  of z .  

We con jec tu re  t h a t  i s  i s  well-posed 

We b e l i e v e  t h a t  t h e  break-up of t he  numerical  

s o l u t i o n  is  pure ly  a numerical  phenomena, caused by inadequate  r e s o l u t i o n ,  

and not  caused by a l o s s  of well-posedness of t h e  d i f f e r e n t i a l  equat ions .  

A s  a demonstration of t he  s i m i l a r i t y  of our system t o  hyperbol ic  systems, 

w e  numerical ly  i n t e g r a t e d  t h e  system wi th  t h e  i n i t i a l  d a t a  of example 2 from 

z = 0 t o  z = 2 and then i n t e g r a t e d  back t o  z = 0. The i n i t i a l  cond i t ions  

were recovered t o  wi th in  the  numerical  accuracy of t h e  method. 
\I. 

Thus t h i s  

system is r e v e r s i b l e  as are hyperbol ic  systems. 

F i n a l l y ,  w e  o f f e r  t h e  fol lowing cormnents on t h e  s t a b i l i t y  of t h e  

d i f f e r e n c e  scheme which is  descr ibed  i n  s e c t i o n  3 .  A s  i n  t h e  above 

d i scuss ion  of t h e  well-posedness of t he  d i f f e r e n t i a l  equa t ions ,  a l l  t h a t  
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can be done is to analyze the stability of the linearized problem. The 

analysis of the stability of the linearized system mimics the above 

analysis of the well-posedness although it involves more complicated 

algebraic expressions. The amplification factor of the von Neumann 

analysis corresponds to the factor' ' e i(wR1 +w1'2 'I/% The actual 

details of the derivation are omitted in the interests of brevity. 
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Table I 

z 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

SOR i t e r a t i o n s  for  s e v e r a l  v a l u e s  of z 

f o r  a r e c t a n g l e  81 X 31, Az = .1 

a. Linear  e x t r a p o l a t  ion b. Previous va lue  
Eq. (4.8)- 

It era t ions  
Predic tor /Correc tor  

75 75 

22 23 

13 13 

12 11 

14 1 2  

14 13 

14 1 3  

Eq. (4.11) 

I t e r a t i o n s  
Predic tor /Correc tor  

>250 48 

>250 26 

>250 16 

247 12 

217 15 

181 15 

14 7 17  
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Table I1 

N-1  

20 

- 

40 

60 

80 

100 

Analysis  of t h e  e r r o r  and accuracy 

of t he  method f o r  e l l i p t i c a l  jets.  

i2 e r r o r  

5.36 x 

max e r r o r  

2.00 x 10-I 

Q2 orde r  

- 

1.16 x 

5.15 x 

2.89 x 

1.85 x 

2.93 x 

1.12 x 10-2 

-2.21 

-2.00 

5.93 x 10-3 

3.74 x 

-2.01 

-2.00 

km orde r  

- 

-2.77 

-2.37 

-2.21 

-2.07 
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Figure 1. Sketch of a v e r t i c a l  s l e n d e r  j e t ,  w i t h  an i n d i c a t i o n  of t h e  
coord ina te  system. The l o c u s  of cent ro ids  of t h e  c ross -sec t ions  of t h e  j e t  
form a s t r a i g h t  l i n e  ( i n  t h e  d i r e c t i o n  of g r a v i t y ) ,  which we choose t o  b e  
t h e  z-axis. Then r ,  8, and z form t he  usual c y l i n d r i c a l  coord ina te  s y s t e n ,  
where 0 is  measured from any convenient plane through t h e  z-axis. The f r e e  
surface of tile j e t  is denoted b y  r = S(8,z;E). 
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A A 
Figure  2.  Examples of t h e  placement of g r i d p o i n t s  near  a corner .  

4 10 

Figure 3 .  Cross-sectional shapes a t  several va lues  of z f o r  3 j e t  
with an i n i t i a l  shape of an e l l i p s e .  
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F igure  4 .  Cross-sec t iona l  shapes a t  several va lues  of z f o r  a j e t  
wi th  t h e  i n i t i a l  shape of an e q u i l a t e r a l  t r i a n g l e ,  w i th  
s i d e  of l eng th  a. 

I 6 

I 7 

:I: I 1 

5 8 

Figure  5. Cross-sec t iona l  shapes f o r  a j e t  with t h e  i n i t i a l  shape 
of a r ec t ang le  wi th  s i d e s  of l eng th  2 and 4 .  



Figure Capt ions 

1. Sketch of a v e r t i c a l  s l ende r  j e t ,  wi th  an i n d i c a t i o n  of  t h e  coord ina te  

system. 

s t r a i g h t  l i n e  ( i n  t h e  d i r e c t i o n  of g r a v i t y ) ,  which w e  choose t o  be t h e  

z-axis .  Then r ,  8 ,  and z form t h e  usua l  c y l i n d r i c a l  coord ina te  system, 

where 8 i s  measured from any convenient p l ane  through t h e  z-axis.  The 

f r e e  s u r f a c e  of t h e  j e t  i s  denoted by 

The locus  of c e n t r o i d s  of t h e  c ross -sec t ions  of  t h e  j e t  form a 

r = s(e ,Z ,E ) .  

2. Examples of t h e  symmetric placement of g r i d  p o i n t s  nea r  a corner .  

I n  example ( a )  a g r i d  po in t  i s  placed a t  t h e  vertex,  wh i l e  i n  example 

(b) t h e  c o m e r  l i es  between two gr id  po in t s .  

3. Cross-sec t iona l  shapes a t  severai va iues  of z i o r  a j e t  wi th  an 

i n i t i a l  shape of an  e l l i p s e .  

4 .  Cross-sec t iona l  shapes a t  seve ra l  va lues  of  z f o r  a j e t  wi th  t h e  

i n i t i a l  shape of an  e q u i l a t e r a l  t r i a n g l e ,  wi th  s i d e  of l eng th  2 a .  

5. 

r e c t a n g l e  wi th  s i d e s  of l eng th  2 and 4 .  

Cross-sec t iona l  shapes f o r  a j e t  wi th  t h e  i n i t i a l  shape of a 


